Dynamical stability and filamentary instability in holographic conductors

Masataka Matsumoto (Shanghai University; 上海大学)

S. Ishigaki, S. Kinoshita, and MM, arXiv:2112.11677[hep-th]

Filamentary instability

Nonlinear conductivity

Figure 1.1. The current density j versus the electric field \mathcal{E} for two types of negative differential conductivity (NDC): (a) NNDC and (b) SNDC (schematic).

unstable

In the S-shape J-E characteristics, the current is a multivalued function of the electric field.

E. Scholl, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Cambridge, University Press (2001).

In the SNDC case, current filamentation generally occurs (filamentary instability).

Homogeneous current

Inhomogeneous current (Current filaments)

The S-shape J-E characteristics can be realized in holography. Does it show the filamentary instability?

Probe brane model: D3/D7 model

Dimensionless parameters: $\left(\frac{T}{m}, \frac{E}{m^2}\right)$

In the Black hole embedding, the dual system has a constant current flow. The system is in non-equilibrium steady state (NESS).

Holographic conductors

In conducting phase (Black hole embedding), the effective horizon appears. The effective horizon is a causal boundary with respect to the fluctuations on the probe brane.

$$\begin{split} \gamma_{ab} \mathrm{d}\xi^a \mathrm{d}\xi^b &= \frac{g_{tt}g_{xx} + E^2}{g_{xx}} \mathrm{d}t^2 - 2\frac{Eh'}{g_{xx}} \mathrm{d}t \mathrm{d}u + \frac{g_{xx}g_{uu} + h'^2}{g_{xx}} \mathrm{d}u^2 \\ &+ \left(g_{xx} + \frac{E^2}{g_{tt}} + \frac{h'^2}{g_{uu}}\right) \mathrm{d}x^2 + \frac{\mathrm{d}y^2 + \mathrm{d}z^2}{u^2} + \cos^2\theta(u)\mathrm{d}\Omega_3^2 \mathrm{d}x^2 \mathrm$$

The current density J can be determined locally at the effective horizon.

$$J = \sqrt{-g_{tt}} g_{xx} \cos^3 \theta \Big|_{u_*}$$

Phase diagram

Current density and chiral condensate 1.2 Conducting phase Black hole embedding) 1.0μ/L_μ 0.6 $\theta(u) = mu + \theta_2 u^3 + \cdots \qquad c \sim \left(2\theta_2 - \frac{m^3}{6}\right)$ $A_x(t, u) = -Et + \frac{J}{2}u^2 + \cdots$ Asymptotic form near Insulating phase 0.4 (Minkowski embedding) the AdS boundary 0.2 0.5 0.6 E/m^2 $E/m_{0.3}^2$ $E/m_{0.3}^2$ 0.1 0.1 0.00.00.010 J/m^3 0.10 $-c/m^3$ 0.005 0.05

turning point

0.00

1.10

1.05

 $\pi T/m^{1.00}$

0.95

Multi-valued functions near the critical embedding.

0.95

0.000

1.10

1.05

.00

 $\pi T/m$

Multivaluedness of J-E characteristics at T=0

J is not a two-valued function of E, and expected to be a <u>multi-valued</u> function.

Effective temperature in NESS

In this system, we can define another temperature from the effective metric. The effective metric on the probe brane is given by

$$\begin{split} \gamma_{ab} \mathrm{d}\xi^a \mathrm{d}\xi^b &= \frac{g_{tt}g_{xx} + E^2}{g_{xx}} \mathrm{d}t^2 - 2\frac{Eh'}{g_{xx}} \mathrm{d}t \mathrm{d}u + \frac{g_{xx}g_{uu} + h'^2}{g_{xx}} \mathrm{d}u^2 \\ &+ \left(g_{xx} + \frac{E^2}{g_{tt}} + \frac{h'^2}{g_{uu}}\right) \mathrm{d}x^2 + \frac{\mathrm{d}y^2 + \mathrm{d}z^2}{u^2} + \cos^2\theta(u)\mathrm{d}\Omega_3^2 \\ \gamma_{ab} &\equiv g_{ab} + (2\pi\alpha')^2 F_{ac}F_{bd}g^{cd} : \text{Open string metric} \end{split}$$

The effective temperature can be defined by

$$2\pi T_{\text{eff}} = \kappa = \left. \sqrt{\frac{-\gamma_{tt}}{\gamma_{tu}^2 - \gamma_{tt}\gamma_{uu}}} \frac{d}{du} \sqrt{-\gamma_{tt}} \right|_{u=u_*} = -\frac{\gamma_{tt}'(u_*)}{2\gamma_{tu}(u_*)}$$

Perturbations

Consider small perturbations on the background solutions.

$$\theta \to \theta(u) + \delta \theta(u) e^{-i\omega t + ik_{\perp}x_{\perp}}$$

 $A_x \to -Et + h(u) + \delta A_x(u) e^{-i\omega t + ik_{\perp}x_{\perp}}$ (x_{\perp} is perpendicular to E)

We obtain the coupled linear-order differential equations with ω and k_{\perp} for perturbations. What we want to do is to solve this eigenvalue equations under the following boundary conditions.

A pure-imaginary mode moves from lower-plane to upper-plane in complex- ω plane.

Perturbations are not damped but growing. (unstable)

This pure-imaginary mode go across the origin at the turning point in J-E characteristics.

It converges to $-\sqrt{6}$ in massless limit.

Albash, Filev, Johnson, Kundu (2008).

Two modes collide with each other and become pure-imaginary modes.

One of them go across zero again at the second turning point.

Two QNMs behaviors.

We expect that there are many "turns" in J-E characteristics for small J.

Pure-imaginary modes go across zero at every "turning points"?

QNM at finite temperature

As in the case of zero temperature, pure-imaginary modes go across zero at the turning points for finite temperature.

Inhomogeneous perturbations

Considering inhomogeneous perturbations with finite k_{\perp} , the pure-imaginary mode moves to the lowerplane.

➡ The system is unstable with respect to homogeneous perturbations, but stable with respect to inhomogeneous perturbations.

➡ Inhomogeneous perturbations with critical momentum corresponds to static perturbations. This implies there exists an inhomogeneous solutions such that the current density is spatially modulated.

Inhomogeneous perturbations

Critical momentum vs current density at various temperature.

Inhomogeneous perturbations

Critical momentum vs electric field

Critical momentum seems to behave as a power function of $E - E_{turn}$.

Summary

- Our system has a constant current flow and shows the nonlinear conductivity. (J is a multivalued function of E.)
- We study linear stability of the system near the multivalued region.
- One branch is dynamically stable but another branch is unstable with respect to a homogeneous perturbations.
- Unstable branch can be stable for inhomogeneous perturbations.
 - → It implies an inhomogeneous state with a spatially modulated current.
 - ➡ holographic realization of current filaments.